I don't think this is in general true for planets or stars. You're confounding multiple effects. For a fixed number of particles, increasing metallicity, which follows average particle mass, should reduce radius, but for a fixed metallicity and temperature, increasing particles will increase radius. Temp has the effects stated. You can roughly validate this by the fact that massive planets and stars are bigger than less massive ones. Obviously many other things start happening as stars reach end of life...
Gas giants generally only get slightly larger than Jupiter (even with adding a lot of mass), until they start to shrink - and eventually with enough mass, turn into actual stars [https://en.m.wikipedia.org/wiki/Gas_giant]
So generally, gas giants don’t get much bigger than Jupiter.
I don't think this is in general true for planets or stars. You're confounding multiple effects. For a fixed number of particles, increasing metallicity, which follows average particle mass, should reduce radius, but for a fixed metallicity and temperature, increasing particles will increase radius. Temp has the effects stated. You can roughly validate this by the fact that massive planets and stars are bigger than less massive ones. Obviously many other things start happening as stars reach end of life...