Hacker Newsnew | past | comments | ask | show | jobs | submitlogin

One interesting development in the latter years is the mix of Constraint programming and SAT solvers. For example Google OR-tools (https://developers.google.com/optimization/ ) which mixes CP, SAT and MIP. It has won most of the MiniZinc Challenge categories (https://www.minizinc.org/challenge.html ) several years now. The Chuffed solver is another solver mixing CP and SAT.


isn't or-tools just a wrapper library for a bunch of solvers? I must be missing something.


Yes, OR-tools has a lot of solvers. The solver I talked about is the CP-SAT solver. It's described (https://www.minizinc.org/challenge2022/description_or-tools_... ) as:

""" CP-SAT is a discrete optimization solver built on top of a SAT engine. It is available within the OR-Tools open-source repository (website: https://developers.google.com/optimization, github repository: https://github.com/google/or-tools). It has won multiple gold medals at the MiniZinc challenge (https://www.minizinc.org/challenge.html) since its debut in 2017.

The CP-SAT solver is architectured around five components: The base layer is a clause learning SAT solver. Above the SAT layer sits a Constraint Programming (CP) module with Boolean, integer and interval variables, and standard integer, scheduling and routing constraints. Alongside the CP solver, a simplex provides a global linear relaxation. Its integration with the CP and SAT layers enable the CP-SAT solver to solve MIP problems with the same techniques as (commercial) MIP solvers: relaxation, cuts, heuristics and duality based techniques. Both the CP and MIP modules rely on a unified protobuf representation of the model that can serve as a file format, as well as an intermediate representation of the model during all phases of the solve (input format, presolved model, LNS fragment). On top, the search layer implements a robust information-sharing portfolio of specialized workers that offers both good and fast solutions, and superior optimality proving capabilities.

This work was presented at the CPAIOR 2020 masterclass. The recording is available on youtube (https://www.youtube.com/watch?v=lmy1ddn4cyw). """


wow. that is impressive.. but surely this CP-SAT solver can't compete with the commercial offerings like Gurobi and CPLEX right? it'd be huge news if so... but I haven't seen it rank at all on the LP-focused benchmarks I've been looking at.


I haven't seen a comparison on LP-focused benchmarks with OR-tools CP-SAT. In the 2022 MiniZinc Challenge (https://www.minizinc.org/challenge2022/results2022.html ) both Gurobi, CPLEX (as well and SCIP and HiGHS) participated: CP-SAT was the best in all the categories it participated in.


It depends a lot on the problem to solve and how it is modeled. For some things OR-tools and/or other CP-style solvers are clearly better than MIP solvers. For others, vice verse.

A really nice thing with MiniZinc is that the same model can be used with both CP silvers like OR-Tools and MIP solvers like CPLEX and Gurobi.




Guidelines | FAQ | Lists | API | Security | Legal | Apply to YC | Contact

Search: